Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Death Discov ; 10(1): 73, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38346981

RESUMO

Childhood febrile seizures (FS) represent one of the most common types of seizures and may lead to severe neurological damage and an increased risk of epilepsy. However, most children with fevers do not show clinical manifestations of convulsions, and the consequences of hyperthermia without seizures remain elusive. This study focused on hyperthermia not reaching the individual's seizure threshold (sub-FS stimulus). Changes in thrombospondin-1 (TSP-1) levels, synapses, seizure susceptibility, and seizure severity in subsequent FS were investigated in rats exposed to sub-FS stimuli. Pharmacological and genetic interventions were used to explore the role of TSP-1 in sub-FS-induced effects. We found that after sub-FS stimuli, the levels of TSP-1 and synapses, especially excitatory synapses, were concomitantly increased, with increased epilepsy and FS susceptibility. Moreover, more severe neuronal damage was found in subsequent FS. These changes were temperature dependent. Reducing TSP-1 levels by genetic intervention or inhibiting the activation of transforming growth factor-ß1 (TGF-ß1) by Leu-Ser-Lys-Leu (LSKL) led to lower synapse/excitatory synapse levels, decreased epileptic susceptibility, and attenuated neuronal injury after FS stimuli. Our study confirmed that even without seizures, hyperthermia may promote synaptogenesis, increase epileptic and FS susceptibility, and lead to more severe neuronal damage by subsequent FS. Inhibition of the TSP-1/TGF-ß1 pathway may be a new therapeutic target to prevent detrimental sub-FS sequelae.

2.
Neurochem Int ; 172: 105644, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38029887

RESUMO

PTEN-induced kinase 1 (PINK1) autophosphorylation-triggered mitophagy is the main mitophagic pathway in the nervous system. Moreover, multiple studies have confirmed that mitophagy is closely related to the occurrence and development of epilepsy. Therefore, we speculated that the PINK1 autophosphorylation may be involved in epileptogenesis by mediating mitophagic pathway. This study aimed to explore the contribution of activated PINK1 to epileptogenesis induced by pentylenetetrazol (PTZ) in Sprague‒Dawley rats. During PTZ-induced epileptogenesis, the levels of phosphorylated PINK1 were increased, accompanied by elevated mitophagy, mitochondria oxidative stress and neuronal damage. After microRNA intervention targeting translocase outer mitochondrial membrane 7 (TOM7) or overlapping with the m-AAA protease 1 homolog (OMA1), the levels of PINK1 phosphorylation, mitophagy, mitochondrial oxidative stress, neuronal injury were observed in the rats with induced epileptogenesis. Furthermore, inhibiting of the expression of TOM7, a positive regulator of PINK1 autophosphorylation, reversed the increase in PINK1 phosphorylation and alleviated mitophagy, neuronal injury, thereby preventing epileptogenesis. In contrast, reducing the levels of OMA1, a negative regulator of PINK1 autophosphorylation, led to increased phosphorylation of PINK1, accompanied by aggravated neuronal injury and ultimately, epileptogenesis. This study confirmed the contribution of activated PINK1 to PTZ-induced epileptogenesis and suggested that the inhibition of PINK1 autophosphorylation may assist in preventing epileptogenesis.


Assuntos
MicroRNAs , Pentilenotetrazol , Ratos , Animais , Fosforilação , Pentilenotetrazol/toxicidade , Proteínas Quinases/metabolismo , Ratos Sprague-Dawley , Mitocôndrias/metabolismo , MicroRNAs/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...